Independent of Their Localization in Protein the Hydrophobic Amino Acid Residues Have No Effect on the Molten Globule State of Apomyoglobin and the Disulfide Bond on the Surface of Apomyoglobin Stabilizes This Intermediate State
نویسندگان
چکیده
At present it is unclear which interactions in proteins reveal the presence of intermediate states, their stability and formation rate. In this study, we have investigated the effect of substitutions of hydrophobic amino acid residues in the hydrophobic core of protein and on its surface on a molten globule type intermediate state of apomyoglobin. It has been found that independent of their localization in protein, substitutions of hydrophobic amino acid residues do not affect the stability of the molten globule state of apomyoglobin. It has been shown also that introduction of a disulfide bond on the protein surface can stabilize the molten globule state. However in the case of apomyoglobin, stabilization of the intermediate state leads to relative destabilization of the native state of apomyoglobin. The result obtained allows us not only to conclude which mutations can have an effect on the intermediate state of the molten globule type, but also explains why the introduction of a disulfide bond (which seems to "strengthen" the protein) can result in destabilization of the protein native state of apomyoglobin.
منابع مشابه
Probing the Non-Native H Helix Translocation in Apomyoglobin Folding Intermediates
Apomyoglobin folds via sequential helical intermediates that are formed by rapid collapse of the A, B, G, and H helix regions. An equilibrium molten globule with a similar structure is formed near pH 4. Previous studies suggested that the folding intermediates are kinetically trapped states in which folding is impeded by non-native packing of the G and H helices. Fluorescence spectra of mutant ...
متن کاملThe pKa of His-24 in the folding transition state of apomyoglobin.
In native apomyoglobin, His-24 cannot be protonated, although at pH 4 the native protein forms a molten globule folding intermediate in which the histidine residues are readily protonated. The inability to protonate His-24 in the native protein dramatically affects the unfolding/refolding kinetics, as demonstrated by simulations for a simple model. Kinetic data for wild type and for a mutant la...
متن کاملStructural Characteristics of Stable Folding Intermediates of Yeast Iso-1-Cytochrome-c
Cytochrome-c (cyt-c) is an electron transport protein, and it is present throughout the evolution. More than 280 sequences have been reported in the protein sequence database (www.uniprot.org). Though sequentially diverse, cyt-c has essentially retained its tertiary structure or fold. Thus a vast data set of varied sequences with retention of similar structure and fun...
متن کاملStructure and stability of a second molten globule intermediate in the apomyoglobin folding pathway.
Apomyoglobin folding proceeds through a molten globule intermediate (low-salt form; I1) that has been characterized by equilibrium (pH 4) and kinetic (pH 6) folding experiments. Of the eight alpha-helices in myoglobin, three (A, G, and H) are structured in I1, while the rest appear to be unfolded. Here we report on the structure and stability of a second intermediate, the trichloroacetate form ...
متن کاملThe molten globule state is unusually deformable under mechanical force.
Recently, the role of force in cellular processes has become more evident, and now with advances in force spectroscopy, the response of proteins to force can be directly studied. Such studies have found that native proteins are brittle, and thus not very deformable. Here, we examine the mechanical properties of a class of intermediates referred to as the molten globule state. Using optical trap...
متن کامل